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Outline 

• Why model human performance at a system-
wide level?

• What human performance should be modeled at 
a system wide level?

• How: What has been the experience of modeling 
human performance?

– Team-Group
– Regional
– System-wide

• What is to be done next?
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Why?
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Why do we model 
human-system behavior ?

• Explore Mechanisms of Performance
– Establish emergent behavior among the human operators 

and the system context in which they operate

• Predict Performance 
– Establish probabilities of operational goals being met
– Determine hazard impact of off-nominal (“blunders” ) 

operations in human-system interaction

• Determine Perceptual, Cognitive and Motor 
Requirements for Task Performance 

• Explore Augmentation of Performance (aiding) 
– Exceed limitations of human and system 
– Reduce frequency and impact of errors
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• Human performance values for the interaction 
between multiple human agents, the system and 
the environment:
– Perceptual demands
– Operator attention demands 
– Cognitive loading 
– Context-Control Switching
– Memory representations
– Task-related information

• Scheduling, degradation, 
shedding

• Task time to complete
• Timeline information
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Why do we model 
human-system behavior  at a system-wide level?

• Explore Mechanisms of Performance
– Establish emergent behavior among the human operators 

and the system context in which they operate

• Predict Performance 
– Establish probabilities of operational goals being met
– Determine hazard impact of off-nominal (“blunders” ) 

operations in human-system interaction

• Determine Perceptual, Cognitive and Motor 
Requirements for Task Performance 

• Explore Augmentation of Performance (aiding) 
– Exceed limitations of human and system 
– Reduce frequency and impact of errors
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What?
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1. Predict Performance

• Determine Hazard Likelihood and Impact:
• Human performance contributes to system 

closed loop response time:  noisy, delayed, 
erroneous, adaptive, anticipatory, predictive

• Models of performance can be used to:
Predict response times to alerts 
Predict visual search times 
Predict the conformance monitoring visual 
sampling for varied separation standards
Predict blunder likelihood and 
response/recovery operations
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2. Examine the Mechanisms of 
Performance 

What mechanisms of human performance scale up 
to have an effect on system-wide operations?

• Closed-loop Operator Loading
– Feasibility measures
– Recoverability measures 

• Requirement for and effect of Aiding Systems 
– Reduction in demand on operator 
– Reduction in likelihood of or impact of error (human or 

system)
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Workload & Situation Awareness: a note

• Prediction or Measurement of “subjectively 
experienced” workload is of NO CONSEQUENCE 

in system-wide modeling 
• Prediction or Measurement of Situation 

Awareness is of NO CONSEQUENCE in system-
wide modeling 

Unless these affect performance in a large-
scale and in a closed loop model.
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ONLY IF: Human Performance is part of a 
closed loop process

Σ
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Control 
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Where: 

YH and Yc are dynamic operators on time replaceable by Fourier 
transformed time functions 
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What Else?

There are the functions of interactions that must 
be represented– the weak forces interpersonal 
gravity begin to dominate at larger scales.

Expectation 
Variations

Internal World & 
Memory

Variations

Procedural
Conflicts

Resource
Conflicts
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How?
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Issues for How

1. Level of detail of human performance 
versus extent of human performance in 
the NAS.

2. Extent of propagation of an affect 
versus damping and dead bands

3. Temporal range of System-wide 
modeling versus operational range of 
human’s in NAS. 
– The human equivalent of good day vs. 

bad day
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1. Level of detail of human performance versus extent of 
human performance
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Two Approaches for HPM 

• Take a representative detailed chunk of behavior 
and distribute it across larger traffic sample or 
larger airspace

or
• Take a small chunk of behavior :

– CD&R (ISA:  RAMS) 
– Speed-based separation assurance (Mitre-CASSD: TSSIM)

And add it to all operations 

Issues: 
Detailed chunk may not generalize completely
Small chunk may contain non-linearities
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Goal Switching in different Control Modes 
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AAC/ACES Analysis 

• ACES Simulated ZOB as a single controller airspace
• ACES Simulated 9618 aircraft transiting ZOB in 24 

hours under AAC Control 
• ATC Agent Communication evens flagged at A/C 

entry into sector
• Air MIDAS runs the coordination event 
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Airspace –ZOB sector 47 and 49
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ATC Processes

Monitor traffic 
& evaluate situation 

If a/c under 
manual
control

Handoff to AAC

Will ATC accept 
T-safe a/c

Handle T-safe
a/c
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3 Aircraft Fail 
at different positions 
and different times
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In this version

Sector Entry AAC control
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Fixate Radar Act Time History
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Timing Data

• Load was not evaluated for schedule
• Tasks were serial 

Results-
• 9618 a/c entered ZOB in 24 hours
• 2269 hand offs managed in 23.16 hours
• 4.23 days to manage 98618 handoffs as modeled
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2. Extent of propagation of an affect versus 
damping and dead bands

Error Evolution Process System Wide
• Two Approaches

–Mathematical Representation of 
Distributional Characteristics (TOPAZ) 

–Regional Performance Models run to 
determine distributional characteristics 
(RFS-AirMIDAS)
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HumanHuman--System Performance AssessmentSystem Performance Assessment
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Minimum 3D Separation Distance per Sector Minimum 3D Separation Distance per Sector 

TBM - Minimum 3D Separation Distance per Sector
for Four Validation Scenarios
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Analyses Results
F test should no significant difference among the sources of data 
(simulation, nominal and actual)
F of 1.648(1, 42) non significant difference for the type of control (TBM 
vs. MIT)
R2 = 0.81 was found in analysis of all model factors (source and 
type) 
R2 = 0.960 was found in analysis of the source of data (actual vs.
simulated)
Conclusion: 

No significant difference between types of control and sources of 
data were found

The simulated and actual controller performances are 99.6% in 
agreement with respect to miles flown in simulation  
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3. Temporal range of System-wide modeling versus operational 
range of human’s in NAS. 

• Mismatch between human performance scale 
and analytic scale of interest for System-wide

– Don’t mistake the map for the territory 
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CIVET

KONZL

Modeled Behavior (1 hour of operations) 

What is the 
impact of 
blunder or 

human 
response 

anomaly at or 
near 

convergence 
points? 
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KONZL

Operational Error Traces (10 month)
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What is to be done next?
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1. Causal factors that emerge to form 
human-system behavior 
– Factors too complex to address 

through standard analysis
2. Performance Factors

– Taskload
– Error Trends 

3. Information Exchange

Scalable Human Performance Characteristic for 
System-wide
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Air-MIDAS INTERACTION WITH ACES
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Human Performance & System-wide Operation 

Phase 1: 
Parameter 
Generation 

Phase 2: 
Performance 
Determination  
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Conclusions 

• There are human performance models available 
to address the major issues of integrating some 
human performance characteristics into system-
wide assessment.

• What is needed:
– Demonstration of those integrated capability 
– Validation of results
– Sensitivity Analyses to human performance inclusion (how 

much is really needed)

• What is really needed is an agreed upon 
experimental design approach using the tools 
described over these two days
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